If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2-22m+32=0
a = 3; b = -22; c = +32;
Δ = b2-4ac
Δ = -222-4·3·32
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-10}{2*3}=\frac{12}{6} =2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+10}{2*3}=\frac{32}{6} =5+1/3 $
| 22=b/22-2 | | 2/7m-1/7=3/13 | | -4(3w-4)=37 | | 7(5y+1)=38 | | -w/5=w/5-1/10 | | N+n=121 | | 17x+8=42+12x+4 | | 2x+8=−8x−12 | | −6w=−30 | | -31/6=k-2/3 | | 3/5(6x-7)=2 | | 9+x=x-6 | | 3x+5(x–6)=2(10–x) | | 1/2x+1/2x+(x+15)+(x+25)+100=540 | | 2a-10=a+60 | | -9(t-3)=4(t+2)-t | | ((x+10)•2)+(x•2)=44 | | 3(x+6)=2x+4x-36 | | 18x+14=10x-18 | | -4(v+7)=5v+44 | | ((x+10)•2)+(x+2)=44 | | 7y-28=4(y-4) | | -1.8=(2z-18)/5 | | 8u-48=-5u+43 | | 3(x+6)-8x=38 | | 2x+5x-5x=-1 | | 8(y+2)-6y=30 | | 4(3s+2)=2(s-1) | | 2(x+8)=4x+10-2 | | |2x-11|=9x | | 49-2a=72-78 | | 8X(40+7)=(8x—)+(8x7) |